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We show how to construct all the graphs that can be embedded on both the
torus and the Klein bottle as their triangulations. � 1999 Academic Press

1. INTRODUCTION

Throughout this paper we assume that the term ``graph'' disallows loops
and multiple edges. Whenever we say ``surface,'' we shall mean a closed,
compact and connected 2-manifold; it is well-known that each orientable
surface is a sphere with k�0 handles, denoted by Sk , while each nonorien-
table one is a sphere with k>0 crosscaps, denoted by S� k . In general we
follow the terminology and notation of [17].

An embedding T of a graph G in a surface S is called a triangulation of
S if each face of T is bounded by a 3-cycle of G, that is, a cycle consisting
of three edges of G. If one embedding of G in some surface is a triangula-
tion, then it follows from Euler's formula that all embeddings of G in
surfaces of the same Euler characteristic are triangulations.

It follows from Ringel's results that if /=(7n&n2)�6 is a negative even
integer, then the complete graph Kn triangulates both S1&/�2 and S� 2&/ ; see
[15, 16]. Such is not the case when n=7 (so that /=0); it is well-known
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FIG. 1. Triangulations of a torus and a Klein bottle.

that K7 triangulates the torus S1 , but does not embed in the Klein bottle
S� 2 (see Franklin [6]). Curiously, while S1 and S� 2 have the same Euler
characteristic /=0, some graphs triangulate S1 but not S� 2 , some S� 2 but
not S1 , and some both S1 and S� 2 . The following are some more examples
to illustrate this phenomenon.

Figure 1 presents triangulations (a) of S1 and (b) of S� 2 ; the torus and
the Klein bottle are depicted as a square with opposite sides identified in
pairs as the labels prescribe. Let G(n, n, n) denote the graph obtained from
the complete bipartite graph Kn, n by removing n mutually disjoint edges. It
is easy to see that the graph of (a) has as a subgraph G(5, 5, 5) obtained
from the graph K5, 5 having as parts the vertex subsets [1, 6, 7, 8, 9] and
[10, 3, 5, 2, 4]. The graph G(5, 5, 5) does not embed in S� 2 (see Mohar
[12]), so that the graph of (a) does not either. On the other hand, we shall
see in Section 2 that the graph of (b) does not embed in S1 .

Figure 2 presents triangulations (a) of S1 and (b) of S� 2 , which we will
denote by TL and KL , respectively, both with the graph L=(P4+K� 2)+K2 .
The labels are such that, in constructing L, (6, 8, 5, 1) is the path P4 , [3, 7]
is the vertex set of K� 2 , and [2, 4] of K2 . The shaded faces are those bounded
by the same (labeled) 3-cycles of L in both TL and KL .

Let us subdivide the shaded faces in TL and KL , in the same way in
both, with the only restriction that this process must produce triangula-
tions. In particular, the edge 67 may be subdivided into a path, but the
other edges on the boundary of each shaded face must not be subdivided.
Obviously, by doing so, we can obtain infinitely many pairs of triangula-
tions of S1 and S� 2 each pair of which have the same graph. The main result
of this paper is that every such pair can be obtained in this way:
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FIG. 2. Triangulations of a torus and a Klein bottle with the same graph L.

Theorem 1. Given a pair of triangulations of the torus and the Klein
bottle, both with the same graph, such pair can be obtained from the pair
[TL , KL], presented in Fig. 2, by appropriately triangulating the shaded
faces.

We shall prove this theorem in Section 4, suggesting a procedure for
generating all such pairs from [TL , KL] by successively splitting the corre-
sponding vertices in both TL and KL so as to subdivide them only within
the shaded faces. Such recursive constructions of many families of planar
graph embeddings are known while for graphs in other surfaces much less
is known. This topic received increasing attention during the past decade;
see, for example, [1�4, 8�14].

Theorem 1 immediately implies the following:

Corollary 2. There is precisely one 5-connected graph, L, which trian-
gulates both the torus and the Klein bottle, and there is none which is 6-connected.

2. IRREDUCIBLE TRIANGULATIONS

Let T(G) be a triangulation of some surface with a graph G. By shrinking
an edge v+v& in T(G) we mean that this edge shrinks into a single vertex
v and the two faces, v+v&x and v+v&y, meeting this edge degenerate into
two edges vx and vy, respectively. The inverse of this operation is called
splitting the vertex v along the edges vx and vy. We shall say that an edge
is shrinkable provided that shrinking the edge produces an embedding of a
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(simple) graph. If no edge of T(G) is shrinkable we say that the triangula-
tion is irreducible.

The only impediment to shrinkability is the creation of multiple edges.
This would happen only when the edge appears in more than two of the
3-cycles of G, so that the shrinkable edges of T(G) are those appearing in
exactly two 3-cycles each (of course, those two bound faces of T(G)).
Therefore, rather than being a property of T(G), being irreducible is a
property of its graph G. In particular, any embedding of K7 in S1 is
necessarily an irreducible triangulation.

It has been already shown, in [5, 7, 11, 13, 14], that the set I(S) of
irreducible triangulations of any surface S is finite (up to isomorphisms, see
Section 3). In particular, Lawrencenko [8] has determined |I(S1)|=21,
identifying all the members of I(S1) explicitly; two of them are presented
in Figs. 1a and 2a. Recently, Lawrencenko and Negami [9] have classified
all the members of I(S� 2), which are 25 in number. Figures 1b and 2b
present two of the members of I(S� 2).

Let us now prove what we asserted in the introduction��that the graph
of Fig. 1b does not embed in S1 . Actually, if it did, then it would occur in
I(S1) since each of its edges appears in more than two 3-cycles, contrary
to [8].

The following fact is one of the key facts used to prove Theorem 1:

Lemma 3. There exists precisely one graph, L, which admits irreducible
triangulations of both the torus and the Klein bottle. K

This has been shown as Theorem 10 in [9], where the authors have
discussed on some partial structures of irreducible triangulations on the
Klein bottle S� 2 which make them not embeddable in the torus. In their
classification, the unique member of I(S� 2) which L admits is denoted by
Khl and is isomorphic to KL given in Fig. 2b. (Before the authors estab-
lished the complete list of irreducible triangulations of the Klein bottle,
they also had checked that the member of I(S1) embeddable in the Klein
bottle is isomorphic to TL given in Fig. 2a, using a computer program and
already concluded Theorem 1 in 1994. Now we can give a computer-free
proof with the above lemma.)

3. ISOMORPHY OF PAIRS OF TRIANGULATIONS

A triangulation T of some surface S with a given graph G is assumed to
be well-defined by the set F(T ) of the 3-cycles of G bounding faces of T;
thus we only distinguish triangulations G � S up to homeomorphisms of S.
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FIG. 3. Symmetric appearances of TL and KL .

By Aut(G) we denote the automorphism group of G. For % # Aut(G) we
denote by %(T ) the triangulation, with the same graph G, defined by:

F(%(T ))=[%(u) %(v) %(w) | uvw # F(T )].

Let T and T $ be two triangulations, both with a graph G. We shall write
T=T $ if F(T )=F(T $). If there exists % # Aut(G) with %(T )=T $, then T
and T $ are said to be isomorphic. In particular, if %(T )=T, then such an
automorphism % # Aut(G) of G is called a symmetry of T. The set of sym-
metries of T is called the symmetry group of T and is denoted by Sym(T ).
It is clear that Sym(T ) is a subgroup of Aut(G) and that if Sym(T ) has
index n in Aut(G), then G admits precisely n triangulations which are
isomorphic to T but are all distinct.

Two pairs [T1 , T2] and [T $1 , T $2] of triangulations of some surfaces
with the same graph G are said to be isomorphic pairs if there exists
% # Aut(G) such that %(T1)=T $1 and %(T2)=T $2 .

Lemma 4. Each pair of triangulations, both with the graph L, of the
torus and the Klein bottle is isomorphic to the pair [TL , KL].

Proof. First we should identify the symmetry groups Sym(TL) and
Sym(KL). Since L=(P4+K� 2)+K2 , its automorphism group Aut(L) is an
abelian group of order 8 generated by (16)(58), (37), and (24):

Aut(L)=( (16)(58), (37), (24)) $Z2_Z2 _Z2 .
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TABLE I

Automorphisms of the Graph L

%1 %2 %

id id id
id (24) (37)(16)(58)
id (37) (24)(16)(58)
id (24)(37) (24)(37)

(24) id (24)(37)(16)(58)
(24) (24) (24)
(24) (37) (37)
(24) (24)(37) (16)(58)

It is routine to determine Sym(TL) and Sym(KL). The symmetric forms of
TL and KL presented in Fig. 3, however, suggest that

Sym(TL)=[id, (24)(37), (37)(16)(58), (24)(16)(58)];

Sym(KL)=[id, (24)(37)(16)(58)].

Thus, Aut(L) has the following coset decompositions:

Aut(L)=Sym(TL) _ (24) Sym(TL)

=Sym(KL) _ (24) Sym(KL) _ (37) Sym(KL) _ (24)(37) Sym(KL).

This implies that L admits 2 distinct triangulations on the torus and 4 on
the Klein bottle, corresponding to these cosets:

TL , (24)(TL); KL , (24)(KL), (37)(KL), (24)(37)(KL).

Therefore, any pair of triangulations [T1 , T2] with the graph L of the
torus and the Klein bottle is isomorphic to [%1(TL), %2(KL)] for suitable
automorphisms %1 , %2 # Aut(L). Table I specifies % # Aut(L) corresponding
to each possible pair [%1 , %2]. For every such pair, it is routine to verify
that %(TL)=%1(TL) and %(KL)=%2(KL). Thus, [T1 , T2] is isomorphic to
[TL , KL]. K

4. COMMON SPLITTINGS

As usual, denote by V(G) and E(G) the vertex and the edge sets of a
graph G, respectively. Let Ti (i=1, 2) be two triangulations of some
surfaces, both with a graph G. The link of a vertex v # V(G) in Ti is a cycle
of G induced by the set of edges [uw # E(G) | vuw # F(Ti)] and is denoted
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by link(v, Ti). Let vx, vy # E(G) with x{ y. Then the vertices x and y divide
link(v, Ti) into two open paths, Ai and Bi . If V(A1)=V(A2) (or, equiv-
alently, V(B1)=V(B2)), splitting v along vx and vy is said to be a common
splitting for T1 and T2 . Note that applying a common splitting to T1 and
T2 produces a pair of triangulations with the same graph again.

Proof of Theorem 1. Given two triangulations T1 of S1 and T2 of S� 2

with the same graph, by repeatedly shrinking the corresponding shrinkable
edges simultaneously in T1 and T2 , we shall finally obtain a pair of
irreducible triangulations of S1 and S� 2 , still both with the same graph. By
Lemmas 3 and 4, this pair is isomorphic to [TL , KL]. Thus, by the reverse
sequence of splittings applied to [TL , KL], we return to the pair [T1 , T2].
Clearly all these splittings are common for the corresponding pairs of trian-
gulations. One can easily verify that a splitting is common for TL and KL

if and only if it is done along the edges 64 and 68, or 74 and 78, or vx and
vy, where vxy is one of the shaded faces; see Fig. 2; it follows that any
sequence consisting of only common splittings, applied to [TL , KL], can be
done by accordingly changing TL and KL only within the shaded faces.
This completes the proof of Theorem 1. K

Finally, we note that from the pair [TL , KL] the whole family of such
pairs of triangulations of S1 and S� 2 (both triangulations of each pair with
the same graph) can be recursively generated with the only operation of
common splitting.
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